skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kitoka, Kristīne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluorine‐19 NMR spectroscopy has emerged as a powerful tool for studying protein structure, dynamics, and interactions. Of particular interest is the exploitation of trifluoromethyl (tfm) groups, given their high sensitivity and superior transverse relaxation properties, compared to single fluorine atoms. However, biosynthetic incorporation of tfm‐bearing amino acids remains challenging due to cytotoxicity and incompatibility with natural tRNA synthetases. Here, we report on overcoming this challenge using cell‐free synthesis, incorporating trifluoromethyl‐methionine (tfmM) into the protein Cyclophilin A (CypA) with remarkably high efficiency, impossible via biosynthetic means. Importantly, we demonstrate that tfmM CypA binds a native substrate, the N‐terminal domain of HIV‐1 capsid protein (HIV‐1 CA‐NTD), and retains peptidyl prolylcis/transisomerase activity. It also binds the peptide inhibitor Cyclosporine A (CsA) with the same affinity as non‐labeled, wild‐type CypA. Furthermore, we show that19F isotope shifts and19F solvent paramagnetic relaxation enhancements (PREs) provide valuable structural information on surface exposure. Taken together, our study illustrates that tfmM can be readily incorporated into proteins at very high levels by cell‐free synthesis without disturbing protein structure and function, significantly expanding the scope of19F NMR spectroscopy for studying protein structure and dynamics. 
    more » « less